Reproduced with permission from Expert Evidence Re

‘ i port, Vol. 4, No. 9 (May 10, 2004), p. 238.
Copyright ® 2004 by The Bureau of National Affairs, Inc. (800-372-1033) <http//www.bn)a.?:om>
238 (Vol.'4, No. 9)

Practice lip

In virtually any case involving computer software, one of the discovery requests will be
for the source code for the relevant computer software. But awareness before the discovery
request of how the source code will actually be used can result in a more focused discovery
request, says author Lee Hollaar, a professor of computer science who has been a technical
expert in a number of intellectual property and antitrust suits. Knowing how the source
code will be used will give a better chance that what is needed will be produced in a timely
fashion, and be a more efficient use of the software experts.

Based on his experiences as a technical expert in computer software copyright, trade se-
cret, and patent suits, and a number of the Microsoft antitrust suits (where he examined
Microsoft source code from MS-DOS 1 through Windows XP), Hollaar gives practitioners

advice on how to make their examination of source code more effective.

Requesting and Examining Computer Source Code

By Ler A. HoLLAaAR

How Source Code Is Used

efore making a discovery request for computer
B source code, an attorney should consult with the

case’s technical experts to decide what to request,
and in what form. Your discovery request will turn on
what claims are at issue: In different kinds of cases you
will have different specific purposes for examining
source code. In a patent infringement case, for ex-
ample, you are looking for the particular sections of

Dr. Lee A. Hollaar is a professor in the School
of Computing at the University of Utah in Salt
Lake City, where he teaches networking and
computer law. He is the author of Legal
Protection of Digital Information, published in
2002 by BNA Books and available at no cost
at http://digital-law-online.info. He was a com-
mittee fellow at the Senate Judiciary Commit-
tee, where he worked on patent reform leg-
islation and what became the DMCA, and was
a visiting scholar at the Federal Circuit. He
has been the technical expert in a number of
intellectual property and antitrust cases, and
assisted the states in their settlement nego-
tiations and the remedies phase of the
Microsoft case. Professor Hollaar is a member
of the Advisory Board of Expert Evidence
Report, and can be reached at hollaar@
cs.utah.edu.

source code that implements each claim element. There
is no need to compare it to the patent owner’s imple-
mentation of the invention.

In contrast, in a copyright infringement case, you are
looking for substantial similarity between the copyright
owner’s source code and the alleged infringing soft-
ware, after filtering out aspects of the source code that
are not protectable by copyright, such as things dictated
by external considerations or efficiency. However, this
is not a simple literal comparison, since there still may
be copyright infringement if the alleged infringing work
is a derivative work written in a different programming
language.

Trade secret misappropriations are similar to patent
infringements, in that you are looking for portions of
the source code that implement the trade secret. But
trade secret suits are more complicated than patent
suits, since there are not the claims of a patent to guide
the examination of the source code. Rather, the plaintiff
in the trade secret case must specify the particular trade
secrets at some point in the litigation, preferably (at
least for the defendant) before access to the source
code so that it cannot be mined for possible trade se-
crets.

The need for source code in antitrust litigation de-
pends on the nature of the claims. In Caldera v. Mi-
crosoft, 1 used the source code to determine whether
the tie between Windows and DOS in Windows 95 was
necessary to produce the benefits that Microsoft had
claimed. It was also used to determine the nature of
predatory code that Microsoft had inserted in a beta test
version of Windows 3.1 that printed out an error mes-
sage when run with DR DOS, and the nature of a prob-
lem that prevented the Windows 3.1 setup program to

5-10-04

COPYRIGHT © 2004 BY THE BUREAU OF NATIONAL AFFAIRS, INC., WASHINGTON, D.C. EXER

ISSN 1536-1896

PRACTICE TIP

(Vol. 4, No. 9) 239

run with DR DOS. In contrast, in Bristol v. Microsoft, 1
used the source code to determine the portions of Win-
dows NT4 that would not be supplied to Bristol under a
change in its contract with Microsoft and the effect that
would have on the viability of Bristol’s product allowing
the migration of programs from Windows to Unix.

What Needs to Be Provided

What source code needs to be provided depends on
more than the type of action. While it may be possible
to request only selected portions of the overall source
code for a system, such as those that may correspond to
the elements of a patent claim or that implement a par-
ticular capability, that requires a great deal of trust in
the producing side. It is far better to request the com-
plete source code, which in most cases can be stored on
one or two compact discs.

In fact, it may be necessary to examine a number of
versions of the source code if there is a claim by the de-
fense that the software has been changed over time,
such that it might not have infringed before or after a
particular version. In that case, the plaintiff’s expert
would want to compare the source code of the different
versions to determine how it has changed and whether
such changes affect the possible infringement of copy-
right or patent. This comparison often can be done us-
ing a utility program such as Microsoft’s WinDiff, which
can compare all the files in two different directory trees
and indicate which ones have changed. WinDiff also al-
lows the examination of the changes to the individual
files, highlighting added, removed, or changed lines in
color.

It is clearly important to ask the other side, either in
interrogatories or in a deposition, whether there are dif-
ferences in the versions of the source code for a pro-
gram that affect whether it may infringe a copyright or
patent, and what those differences are.

Sometimes, the source code is stored in a source code
control system (sometimes called a version control sys-
tem) where a programmer can check out a file to work
on and then check it in when finished. Many source
code control systems can show the state of a file at any
specified version, and provide a history of the changes.
Because the source code control system may store in-
teresting information not contained in the individual
source code files, such as who made a particular
change, when the change was made, and even a com-
ment about why a change was made, a discovery re-
quest for source code should always specify that if a
source code control system is used, all the information
from the source code control system (and in particular,
any control or database files used by the source code
control system) must be produced.

But unless one has a running copy of the source code
control system, having its information may not be
enough. Perhaps the best way to handle this is to ask in
an initial interrogatory whether a source code control
system is used in the maintenance of the source code
and, if so, what system is being used, including the
name of the supplier and the particular version. If that
source code control system is readily available, then re-
questing a copy of its stored files should be sufficient.
However, if a “home-brewed” source code control sys-
tem, or one not generally available, is being used, then
it will be necessary to request the source code control
system along with the source code, with information

necessary to configure and use the source code control
system.

It is sometimes desirable to compile the source
code, rather than simply examine it. This can
assure that the production is complete and‘
corresponds to a particular marketed version, and
allows the expert to examine its execution using

- a debugging tool.

It is sometimes desirable to compile the source code,
rather than simply examine it. This can assure that the
production is complete and corresponds to a particular
marketed version, and allows the expert to examine its
execution using a debugging tool. If you plan on com-
piling the source code, information about the particular
compilation tools and their configuration should be re-
quested in an interrogatory. As with a source code con-
trol system, if the particular tools are not generally
available and are necessary for the examination of the
program, they should be requested.

Sometimes the software to be examined is not just

conventional source code, but has been developed us-
ing something like Microsoft’s Visual Basic. The soft-
ware contains not only the sequence of instructions fa-
miliar in conventional software, but also information
that configures the runtime environment to create
forms or reports based on predefined controls. To see
the effect of that information, it is necessary to view the
software in the same development environment as it
was developed. Again, that environment should be de-
termined by interrogatories before the source code pro-
duction request, and if it is not something that can be
easily recreated (say, because it uses tools that were de-
veloped in-house or a particular software development
system not readily available), a request should be made
for the development tools in addition to the source
code. :
Material to be produced can also include more than
source code. If a database system, like Microsoft’s SQL
Server, is being used as the foundation of a system,
then the database schema and any other information
used to configure the database system may have to be
reviewed.

Finally, if the program uses any libraries, database
systems, or similar things supplied by others, it will be
necessary to get those, and information regarding their
configuration and use, if the program is going to be
compiled and run with a debugger.

Based on the response to well-crafted interrogatories,
or the deposition of a software developer familiar with
the tools and procedures used, it should be possible to
frame a discovery request that gets all the necessary
material without being burdensome.

How It Should Be Provided

Obviously, you want the source code in a form that
can be best used in the particular type of action. In no

EXPERT EVIDENCE REPORT ISSN 1536-1896

BNA 510-04

240 (Vol. 4, No.9)

PRACTICE TIP'

case will this be a paper listing of the source code, be-
cause it is simply too hard to examine. For example, it
does not permit the expert to search for the point where
a particular message is generated (which is a great way
to find a section of code that performs the operation re-
lated to the message), all uses of a particular variable or
subroutine in the program, or similar things. A
machine-readable version is necessary.

And in some instances, a paper listing of the source
code would be too large to reasonably handle. In the
Bristol case, the source code for Windows NT4 required
four compact discs, and for Windows 2000 required
seven compact discs. Microsoft initially supplied about
two dozen compact discs of source code, because of dif-
ferent versions of Windows, and about 40 compact
discs by the end of discovery. The source code for even
a simple system may fill more than a compact disc if dif-
ferent versions must be examined.

The side producing the source code will be justifiably
concerned with its protection, and will likely insist on
special conditions regarding its use and handling. Many
of these concerns may already be addressed by the pro-
tective order in the case for other highly-confidential in-
formation. If that is so, then the framework of the pro-
tective order should be used, rather than providing new
conditions, simply so that mistakes are not made be-
cause of special rules. The treatment of source code
needs to be considered in the development of any pro-
tective order in a software-related case.

Care must be taken to protect the source code. It
should never be stored on a machine where it can be ac-
cessed by unauthorized persons. Because peer-to-peer
file sharing program or computer viruses may give un-
intended access to others on the Internet, the computer
should never be connected to a computer network when
storing the source code. That can be achieved by using
a special computer for the source code (since comput-
ers are so inexpensive today) or by storing the source
code on removable media (Zip disks or external hard
drives, for example) and only connecting the computer
to a network when the source code has been removed.

If source code control systems, database systems, or
particular development systems are necessary for the
proper examination and understanding of the source
code, it may be easier to request that the party produc-
ing the source code provide it on a portable personal
computer, with all necessary database systems and de-
velopment tools properly configured. The cost of such a
portable computer is small compared to the time that
the requesting party may spend getting the develop-
ment environment running, and the producing party
answering questions.

In a software trade secret case where I was a court-
appointed expert, one of the potential trade secrets was
the database organization. Each party set up a portable
computer with their database systems running (as well
as with their source code and its development tools)
and sent it to me. That worked really well and substan-
tially reduced time I had to spend and the cost to the
parties.

What to Do After You Have R?

Of course, what you do with the source code after you
have it depends on what you wish to prove in your case.
For a copyright or trade secret case, your expert will
compare the defendant’s source code against the plain-

tiff’s to determine if they are substantially similar or
contain the trade secret elements. For a patent case,
your expert will look for portions of the source code
that implement the specific claim elements.

But if thé source-code-produced-runs fill a
compact disc or more, how do you go about
finding the needles in a haystack of code? In many
cases, the expert can use software tools to do

much of the work.

But if the source-code-produced-runs fill a compact
disc or more, how do you go about finding the needles
in a haystack of code? In many cases, the expert can use
software tools to do much of the work. For example,
you can produce a list of files, database tables, or simi-
lar items from two systems, sort the lists, and compare
them to see what items are in one system but not the
other. You can search for a particular subroutine name
to find all the other routines that use it. You can look for
the character string of a particular message that occurs
when the program is doing an operation of interest, and
then search for all locations that output that string.

In patent cases, you examine the source code as
added confirmation that the program infringes the
patent. For example, in a case regarding patents on a
method for repartitioning a hard disk of a computer, I
could determine that the claims at issue were infringed
by creating a test configuration on the disk, running the
program, and seeing the result. Unless the changes
were being done by magic, the defendant’s program in-
fringed the patents. But it was useful to indicate the sec-
tions of the source code where the various steps were
performed, at least to the level of identifying the par-
ticular subroutines if not the specific lines of code, so
that no argument could be made that the software
didn’t really perform the patented method.

One problem that comes up when you have only the
source code to examine—rather than actually running
the program with test data and observing the
infringement—is that code that appears to implement
one of the claim elements isn’t actual run (so-called
“dead code” that exists as an artifact of the code devel-
opment), or is not run in the proper relationship to
other claim elements. In that case, it would be neces-
sary to actually run the code (and perhaps compile it
with a debugging program) to show that it is actually
executed as necessary to find infringement. Alterna-
tively, the defendant could stipulate that anything in the
produced source code will be executed when the obvi-
ous conditions are present. But the plaintiff in a patent
infringement suit should either be able to actually com-
pile and run the code in a debugging environment to
show that it is actually executed, or get such a stipula-
tion. Otherwise, they could be unfairly asked whether
the code is actually executed.

Another reason for compiling and actually running
the source code is to assure that the source code is com-
plete so that it can be searched for the claim elements.
But especially in a patent suit, where the expert is look-

5-10-04

COPYRIGHT © 2004 BY THE BUREAU OF NATIONAL AFFAIRS, INC., WASHINGTON, D.C. EXER

ISSN 1536-1896

PRACTICE TIP

(Vol. 4, No. 9) 2411

ing for particular sections of code that implement claim
elements, there is a better alternative than having the
plaintiff’s expert searching through unfamiliar code.
First, the defendant needs to make a representation that
the source code production is complete and that for
purposes of possible patent infringement, it is represen-
tative of all the versions of the allegedly-infringing pro-

Second, the defendant can be asked, either in inter-
rogatories or (preferably) a 30(b) (6) deposition, to iden-
tify all portions of the source code that perform particu-
lar operations corresponding to claim elements. That

way, the code developer provides the initial road map to
the code examination, and the source code can be used
by the plaintiff’s expert to confirm the answers and see
whether anything was missed or misrepresented.
(Knowing how easy it is to confirm the testimony tends
to make it very accurate.)

By understanding what you intend to prove using
source code, and working with your experts on the dis-
covery request based on what they will need, an attor-
ney in a case that involves computer programs can effi-
ciently review source code, even when the system is as
large as Microsoft Windows.

EXPERT EVIDENCE REPORT ISSN 1536-1896

BNA 5-10-04

	page 1
	page 2
	page 3
	page 4

